Burger's Model in PFC

Introduction

The Burger's model provides a Kelvin model acting in series with a Maxwell model, in both the normal and shear direction. The Kelvin model is the combination of a linear spring and dashpot components that act in parallel with one another. The Maxwell model is the combination of a linear spring and dashpot components that act in series. The Burger's model act over a vanishingly small area, and thus transmit only a force.

Behavior Summary

The rheological components of the Burger's model are shown in the figure below, for both the normal and shear directions. In both directions, the model combines a Kelvin and a Maxwell model acting in series. In the normal direction, the Kelvin model provides a linear spring with stiffness Kkn and a dashpot with viscosity Ckn, and the Maxwell model provides a linear spring with stiffness Kmn and a dashpot with viscosity Cmn. The Burger's model can sustain tensile forces (Mt =0) or not (Mt =1). In the shear direction, , the Kelvin model provides a linear spring with stiffness Kks and a dashpot with viscosity Cks, and the Maxwell model provides a linear spring with stiffness Kmsand a dashpot with viscosity Cms. A slider with friction coefficient fs limits the value of the shear force according to a Coulomb law.

Rheological components of the Burger's model.

The following figure shows the time-decay of the normal force calculated by PFC2D, compared to the analytical solution for two balls fixed with a non-zero overlap. In both PFC2D and PFC3D models, the numerical solution shows that the contact force exponentially decreases as time increases, which coincides with the analytical solution shown by the blue dashed line in the figures.

Time history of normal contact force of Burger's model. The simulation results are shown in red marks, the analytical solution with the blue dashed line (2D model).

Latest News
  • 3DEC 9 Officially Released ITASCA announces the release of 3DEC v9, an advanced three-dimensional, hybrid discontinuum and continuum modeling...
    Read More
  • A Big Hand of Applause for Our 2023 Summer Interns ITASCA Minneapolis would like to extend our sincerest thanks to our 2023 summer interns for...
    Read More
  • Itasca has announced the release of FLAC2D v9 Itasca has announced the release of FLAC2D v9, revolutionizing the way we analyze and predict...
    Read More

Upcoming Events
25 Feb
SME MINEXCHANGE Conference & Expo
SME's annual conference and expo, MINEEXCHANGE, brings together mining and mineral industry professionals to share best practices and i... Read More
13 Mar
Getting Started with 3DEC
Objectives of the training: Understand the 3DEC numerical approach and the types of problems it can solveKnow how to manipulate the 3DE... Read More
8 Apr
3DEC In-Person Introductory Course
Live in-person introductory training course in Minneapolis, Minnesota. This course provides an overview of the capabilities and feature... Read More