3DEC

Description

3DEC is a three-dimensional numerical modeling code for advanced geotechnical analysis of soil, rock, ground water, structural support, and masonry. 3DEC simulates the response of discontinuous media (such as jointed rock or masonry bricks) that is subject to either static or dynamic loading. The numerical formulation It is based on the distinct element method (DEM) for discontinuum modeling. UDEC is the two-dimensional version.

The discontinuous material is represented as an assemblage of discrete blocks. The discontinuities are treated as boundary conditions between blocks; large displacements along discontinuities and rotations of blocks are allowed. Individual blocks behave (based on constitutive and joint models) as either rigid or deformable (i.e., meshed into finite difference zones) material. Continuous and discontinuous joint patterns can be generated on a statistical basis. A joint structure can be built into the model directly from the geologic mapping. 3DEC also contains Itasca's powerful built-in scripting language FISH. With FISH, you can write your own scripts for users who wish to add functionality for custom analyses.

3DEC 7.0 is a fantastic improvement overall, especially with the updated user interface! The online documentation is a great improvement over using the PDF manuals, especially with the filtering and consolidation improvements.

Rock Mechanics Consulting Finland

Options

Options in 3DEC are sold separately from the general license, allowing users to select the program’s capabilities as meets their own analysis needs without having to purchase all features. Beginning with 3DEC Version 7, the Finite Element Structural Liners option is now included at no additional charge.

Dynamic Analysis: 3DEC simulates the nonlinear response of a system (soil, rock, and structures) to excitation from an external (e.g., seismic) source or internal (e.g. vibration or blasting) sources.

Thermal Analysis: The thermal option in 3DEC allows the simulation of transient heat conduction.

User-Defined Constitutive Models: User-defined constitutive models (UDMs) can be written in C++ for both deformable block materials (zones) and any discontinuities (joints, faults, bedding, artificial surfaces) to calculate new stresses, displacements and strains, for a modified existing material model or a fully customized material behavior.


Download Leaflet

Latest News
  • Introducing FLAC2D Itasca is very pleased to announce FLAC2D as the next generation of our foundational software,...
    Read More
  • Itasca Partners with Rescale for FLAC3D Cloud Computing With the advent of web licenses, Itasca software can be run in the cloud via...
    Read More
  • Software Forum Now Open Itasca has launched a new software forum to provide a platform for users to ask...
    Read More

Upcoming Events
23 May
71st Highway Geology Symposium
Better highways through applied geology.... Read More
20 Jun
URTeC 2022
The Unconventional Resources Technology Conference (URTeC) is an event focused on the latest science and technology applied to explorat... Read More
20 Jun
IAEA International Conference on the Safety and Security of Radioactive Sources
The IAEA is organizing the International Conference on the Safety and Security of Radioactive Sources - Accomplishments and Future Ende... Read More