Microstructural Analysis

One of the main advantages of the discrete approach as defined by Itasca (PFC) is that it allows to accurately reproduce the size distribution, the grain shape (rounded, angular, or elongated), the mineralogical composition, as well as the mechanical and thermal properties of each mineral.

Thanks to this accurate description, it is possible to study the maximum compaction of a granular packing or the agglomeration of a powder under vibration/compression, to reproduce a real fibrous structure obtained from 3D tomographic images or the microstructure of composite materials. The relationship between the microstructure and target macroproperties—such as mechanical strength under various loadings (compression, tension, bending test), permeability, or electrical resistivity— can thereafter be investigated, and optimizations proposed.

Discrete modelling of fibrous structure from 3D tomography images: PFC3D model (on the left) and photograph of a real sample (on the right).
FBD specimen of a baked anode material (PFC2D model).
Latest News
  • Introducing IMAT: Transforming Mining Analysis Solutions Introducing IMAT: Revolutionizing mining analysis with advanced geotechnical modeling and seismic data integration....
    Read More
  • ITASCA Unveils XSite 4.0: Advancing Hydraulic Fracturing Simulation ITASCA announces the launch of XSite 4.0, a groundbreaking advancement in hydraulic fracturing simulation software....
    Read More
  • ITASCA Congratulates the Winners of the 2024 PETER A. CUNDALL AWARD Congratulate to those who were selected for the 2024 PETER A. CUNDALL AWARD for their...
    Read More

Upcoming Events
26 Aug
FLAC3D V9.1 and Griddle V2.0 2024
... Read More
17 Sep
MassMin
Held once every four years, MassMin unites global experts to tackle the industry's most pressing sustainability challenges. MassMin pro... Read More
22 Sep
SMRI Fall 2024
The Solution Mining Research Institute (SMRI) was established in 1965 as a venue for the solution mining and underground storage indust... Read More