Technical Papers

Influence of the particle shape on the impact force of lahar on an obstacle

Rime Chehade1*, Bastien Chevalier1, Fabian Dedecker2, and Pierre Breul1


1
Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France

2Itasca consultants SAS, 29 Avenue Joannes Masset, F-69009 Lyon, France

Chehade R, Chevalier B, Dedecker F, and Breul P (2021) - Influence of the particle shape on the impact force of lahar on an obstacle, Powders and Grains 2021, EPJ Web of Conferences 249 , 03010 (2021) - https://doi.org/10.1051/epjconf/202124903010

Abstract

Lahars represent natural phenomena that can generate severe damage in densely populated urban areas. The evaluation of pressures generated by these mass flows on constructions (buildings, infrastructure…) is crucial for civil protection and assessment of physical vulnerability. The existing tools to model the spread of flows at large scale in densely populated urban areas remain inaccurate in the estimation of mechanical efforts. A discrete numerical model is developed for evaluating debris flow (DF) impact pressures at the local scale of one structure. The large-sized solid particles are modelled explicitly using Distinct Element Method (DEM) and the fine-grained solid particles are integrated in a fluid phase which generates two effects on the movement of particles, i.e. buoyancy and drag. Fluid velocity field and the fluid free surface are obtained from Computational Fluid Dynamics (CFD) code then imported in the DEM simulation in a one way coupling scheme. In this paper, the influence of particle shape on the impact forces generated on the obstacle is investigated: spherical particles and polygonal rigid blocks (r-blocks) are considered. The shape of the particle influences the contact surface and therefore the impact pressure. With an angular shape and several facets like r-blocks, the impact pressure on an obstacle is more important for a flow with the same characteristics.

Latest News
  • ITASCA Releases MassFlow version 9.0 ...
    Read More
  • Introducing IMAT (ITASCA Mining Analysis Toolbox): Transforming Mining Analysis Solutions ...
    Read More
  • 3DEC 9 Officially Released ITASCA announces the release of 3DEC v9, an advanced three-dimensional, hybrid discontinuum and continuum modeling...
    Read More

Upcoming Events
22 Apr
FLAC2D In-Person Introductory Course
Live in-person introductory training course. This 3-day course provides a general overview of FLAC2D and covers many basic concepts and... Read More
29 Apr
PFC In-Person Introductory Course
Live in-person introductory training course. This four-day course provides guidance in the use of the Itasca codes PFC2D and PFC3D to s... Read More
29 May
Getting Started with FLAC2D/FLAC3D
Objectives of the training: •Understand the FLAC2D/ FLAC3D numerical approach and the types ofproblems it can solve•Know how to manipul... Read More