
Getting Started With Dynamic Modeling in FLAC3D
OnlineMay 13, 2025 - May 14, 2025
This training supplies the tools needed to describe and apply the workflow for dynamic analysis in FLAC3D, demonstrating a comprehensive understanding of each step involved, including model setup, boundary conditions, input signal application, and damping, to effectively analyze dynamic behavior in geotechnical simulations.

Python in Itasca Software
OnlineJun 11, 2025 - Jun 12, 2025
This course provides an overview of the Python programming language in Itasca software.
The course covers major applications of Python to extend modeling capabilities with the Itasca codes through many applied examples.

IMAT Training: Revolutionizing Mining Analysis with Seismology & Numerical Modeling
Minneapolis, Minnesota, United StatesJun 16, 2025 - Jun 18, 2025
Explore IMAT’s latest upgrade, uniting open-pit and underground mining capabilities for faster, smarter, and more efficient modeling.
Itasca Educational Partnership
ITASCA Educational Partnership (IEP) Programs
IEP Research Program
IEP Teaching Program
Software Tutorials
Command Conversion Tool
Learn how to automatically convert old FLAC3D and 3DEC data files and FISH functions into the most current software version.
Homogeneous Embankment Dam Analysis (Part 1 of 3)
This FLAC 8.1 tutorial demonstrates how to establish the stresses in the dry embankment prior to the formation of the upstream reservoir.
FLAC3D 7.0 Geometry Mesh Tutorial
This tutorial demonstrates how to generate a 3D volume mesh from surface geometry imported from DXF or STL files. Both hexahedral-dominant and tetrahedral meshes can be generated automatically using the "zone generate from-geometry ..." command in FLAC3D 7. The results of various keywords are shown.
Technical Papers
Depressurising an Underground Ore Body at the McArthur River Mine in Northern Saskatchewan, Canada
Pre-mining depressurising of a deep ore body at the McArthur River mine in northern Saskatchewan was considered to decrease the risk associated with mining near 5 MPa water pressure and increasing the amount of ore that can be extracted.
Connectivity, permeability, and channeling in randomly distributed and kinematically defined discrete fracture network models
A major use of DFN models for industrial applications is to evaluate permeability and flow structure in hardrock aquifers from geological observations of fracture networks. The relationship between the statistical fracture density distributions and permeability has been extensively studied, but there has been little interest in the spatial structure of DFN models, which is generally assumed to be spatially random (i.e., Poisson). In this paper, we compare the predictions of Poisson DFNs to new DFN models where fractures result from a growth process defined by simplified kinematic rules for nucleation, growth, and fracture arrest.