Learning

Itasca Educational Partnership

ITASCA Academics

Software Tutorials

Loops, Splitting, and Operators

When constructing or running simulations, you may want to query or modify values associated with all, or some of, the objects in your model (such as zones, nodes, blocks, balls, contacts, rockbolts, etc.). This may be to measure results like stress or displacement, to assign a calculated extra variable for plotting or to adjust a property value. There are several ways to identify and navigate across all these objects using loops, splitting, and operators — with each one becoming easier and faster to execute. See how you can apply all of these approaches in a tutorial where a zone property is randomly assigned for strength variability throughout the model. You will also see how much easier and faster these approaches have become. Applying model property distributions via the PROPERTY command is also reviewed.

PFC 7 Generating A Bonded Assembly

This tutorial will guide you through how to create a simple material using the linear parallel bond-model.

FLAC3D 6 Introductory Webinar

This video is a recording of a one hour webinar reviewing the latest features in Version 6 of FLAC3D (currently available as a pre-release). Presented by Dr. David Russell, FLAC3D Product Manager and Lead Developer.

Technical Papers

GPR-inferred fracture aperture widening in response to a high-pressure tracer injection test at the Äspö Hard Rock Laboratory, Sweden

We assess the performance of the Ground Penetrating Radar (GPR) method in fractured rock formations of very low transmissivity (e.g. T ≈ 10−9–10−10 m2/s for sub-mm apertures) and, more specifically, to image fracture widening induced by high-pressure injections. A field-scale experiment was conducted at the Äspö Hard Rock Laboratory (Sweden) in a tunnel situated at 410 m depth. The tracer test was performed within the most transmissive sections of two boreholes separated by 4.2 m. The electrically resistive tracer solution composed of deionized water and Uranine was expected to lead to decreasing GPR reflections with respect to the saline in situ formation water.

A Discrete Fracture Network Model With Stress-Driven Nucleation: Impact on Clustering, Connectivity, and Topology

The realism of Discrete Fracture Network (DFN) models relies on the spatial organization of fractures, which is not issued by purely stochastic DFN models. In this study, we introduce correlations between fractures by enhancing the genetic model (UFM) of Davy et al. [1] based on simplified concepts of nucleation, growth and arrest with hierarchical rules.

Use of 3DEC to Study Spalling and Deformation associated with Tunnelling at Depth
Latest News
  • Itasca at Balkanmine 2025! Itasca is pleased to announce its participation in the Balkanmine 2025 Conference. Our experts Lauriane...
    Read More
  • Summer Intern Spotlight ITASCA Minneapolis had another group of excellent summer interns this year across our consulting, software,...
    Read More
  • Seamless Integration of Site Data for Improved Mining Analysis Now Available for IMAT: Seamless Integration of Site Data for Improved Mining Analysis...
    Read More