Scripting FISH in FLAC3D

Introduction

FISH is a built-in scripting language that gives the FLAC3D user powerful control over most every aspect of program operation. From among the numerous possibilities, this presentation gives brief examples of five areas in FLAC3D most commonly customized by use of FISH.

FISH is short for “FLAC-ISH” (or the language of FLAC), the code for which it was first developed. Now, in addition to FLAC and FLAC3D, FISH is also integrated into UDEC, 3DEC, and PFC.

FISH is embedded deeply into FLAC3D at nearly every level. It can be used to parameterize data files so that a number of varying cases can be built into the same basic model. Every data type that makes up a FLAC3D model is also available for FISH to manipulate directly – before, after, and during the solution. This means that not only can FISH be used to create custom complex models and customized results, it can also be used to add custom physics to the solution process that is not part of the standard package.

FISH includes constructs to embed FLAC3D commands within FISH functions (see the command – end command block in the example shown in the Run Control section).

FISH is a semi-compiled language that uses dynamic typing for variables – syntax and use is similar to (but not exactly the same as) Python. It has been created to be very simple for small needs, but it provides structure and data types needed to support large and complex programs if necessary.

The following illustrations give just an idea of the power of FISH. For a complete tutorial, refer to the FLAC3D documentation in section FLAC3D/FLAC3D Modeling/Tutorials/Tutorial: Working with FISH.

A complete reference can be found in the documentation under Scripting/FISH Scripting.

Learn more about how FISH can help with modeling:

Model Creation

Parameterization

Custom Visualization

Physics Extension

Run Control


Latest News
  • Itasca Celebrates 40 Years Itasca is celebrating 40 years of solving geomechanical and hydrogeological challenges through engineering and computer...
    Read More
  • Stability and Stress-Deformation Analyses of Reinforced Slope Failure at Yeager Airport This paper describes the material properties along with the inverse limit-equilibrium and permanent deformation analyses...
    Read More
  • Computers and Geotechnics: Scott Sloan Best Paper Award for 2019 Itasca is pleased to congratulate Dr. Branko Damjanac and Dr. Peter A, Cundall for their...
    Read More

Upcoming Events
19 Apr
FLAC 2021 Online, Live Introductory Training
FLAC is numerical modeling software for advanced geotechnical analysis of soil, rock, groundwater, and ground support in two dimensions... Read More