CycLiq

Description

CycLiq is a unified constitutive model for large post-liquefaction shear deformation of sand (Wang et al, 2014; Wang 2014/2016). The model provides a unified description of sand of different conditions from pre- to post-liquefaction under monotonic and cyclic loading, based on mechanisms proposed by Zhang and Wang (2012). The constitutive model and its numerical implementation have been validated against drained and undrained triaxial experiments, undrained cyclic torsional experiments and centrifuge experiments, and used to analysis on structures in liquefiable ground (Wang, 2014; Wang et al, 2016, 2017; Chen et al, 2018; Zou et al, 2019), showing the great capabilities of the model in simulating sand response of a wide range of densities and confining pressure, and highlighting its advantage in simulating large post-liquefaction shear deformations.

Keywords

  • Liquefaction
  • Dilatancy
  • Post-liquefaction shear strain
  • Seismic analysis
  • Effective stress

References

WANG Rui, ZHANG Jian-min, WANG Gang. A unified plasticity model for large post-liquefaction shear deformation of sand[J]. Computers and Geotechnics, 2014, 59(3): 54-66.

Wang R., Zhang J.M., Wang G., 2014. A unified plasticity model for large post-liquefaction shear deformation of sand. Computers and Geotechnics. 59, 54-66. 10.1016/j.compgeo.2014.02.008.

Zhang J.M., Wang G., 2012. Large post-liquefaction deformation of sand, part I: physical mechanism, constitutive description and numerical algorithm. Acta Geotechnica, 7(2): 69-113.

Zou You-xue, Wang Rui, Zhang Jian-Min. 2018. Implementing a plasticity model for large post-liquefaction deformation of sand into the FLAC3D program. Rock and Soil Mechanics, 39(4): 1525-1534. (in Chinese)

Wang R., Liu X., Zhang J.M. 2017. Numerical analysis of the seismic inertial and kinematic effects on pile bending moment in liquefiable soils. Acta Geotechnica, 12 (4), 773-791. 10.1007/s11440-016-0487-z.

Wang R., Fu P, Zhang J.M. 2016. Finite Element Model for Piles in Liquefiable Ground. Computers and Geotechnics. 72, 1-14. 10.1016/j.compgeo.2015.10.009.

Zou You-xue, Wang Rui, Zhang Jian-Min. 2019. Analysis for the seismic response of stone columns composite foundation in liquefiable soils . Rock and Soil Mechanics, 40(6): 10.16285/j.rsm.2017.0852. (in Chinese)

Chen R.R., Taiebat M., Wang R., Zhang J.M. 2018. Effects of layered liquefiable deposits on the seismic response of an underground structure. Soil Dynamics and Earthquake Engineering, 113: 124-135. 10.1016/j.soildyn.2018.05.037.

CycLiq

UDM Version: 1
Release Date: Nov 18, 2019

Category: Sand

Software: Download: Contact: Developer:

Latest News
  • Meet Our Summer Interns Itasca is pleased to welcome three graduate student summer interns to Minneapolis. They will be...
    Read More
  • New Itascans Itasca welcomes Amanda Schendel and Luis Wasserman to our team....
    Read More
  • A Celebration of 40+ Years Itasca celebrated its 40th anniversary in May, marking four decades of discovery, service, and family....
    Read More

Upcoming Events
26 Jun
ARMA 56th US Rock Mechanics / Geomechanics Symposium
The 56th US Rock Mechanics / Geomechanics Symposium covers all aspects of rock mechanics, geomechanics, and rock engineering. ... Read More
29 Jun
3rd International Discrete Fracture Network Engineering (DFNE) Conference
The third International Conference on Discrete Fracture Network Engineering (DFNE 2022) present the important advances that have occurr... Read More
16 Aug
RockEng 2022
The theme of RockEng22 is Canadian Strengths and Future Directions in Rock Mechanics.... Read More